
Salesforce
observability
Close the visibility gap in your
DevOps lifecycle

2

Contents

Who should read this whitepaper? ��3

What is observability? ��4

Why DevOps needs observability��5

Salesforce’s observability gap — and why it matters ��6

How to close Salesforce’s biggest observability gaps ��9

Unhandled exceptions�� 10

Proactive exception handling �� 12

Metadata change monitoring�� 13

Easy error monitoring�� 14

Governor limits�� 18

Designing for governor limit resilience�� 19

Sandbox seeding �� 21

Storage sprawl��22

Making storage sprawl visible��23

Data dashboard ��24

Implementing observability��� 25

Core principles for a Salesforce observability framework��25

Observability gaps: a checklist��27

Next steps: integrating observability ��� 28

About Gearset��� 29

3

Whether you’re hands-on with development, responsible for
designing scalable architecture, or managing the platform’s
overall health, this whitepaper is for you.

If it’s your responsibility to keep a Salesforce org functional and available — excluding platform-
wide outages beyond your control — this paper will provide the technical insights you need.

Who should read this whitepaper?

Developers

Architects

Platform managers

Gain a clearer understanding of how observability impacts
org reliability and what can be done to improve it.

Admins

Learn techniques for better exception handling, logging,
and debugging to improve code reliability.

Discover strategies for designing scalable systems that
anticipate failure, adapt to growth, and stay resilient under
platform constraints.

Get insights into maintaining system health, minimizing
downtime, and ensuring platform-wide stability.

4

What is observability?

Observability is understanding the state of a system, based
on its outputs. In a Salesforce context, it’s the ability to assess the
health, performance, and behavior of your orgs by analyzing the
data they generate.

Observability is more than just setting up logs and alerts. It means proactively monitoring the
health of your org, using a variety of metrics, so you can identify how to improve its stability and
reliability. Observability minimizes the impact of issues by resolving them without users needing
to report manually and maximizes the insights your team needs to debug and optimize the
performance of your org.

Observability is an essential part of the DevOps lifecycle, not an afterthought or add-on. It’s
an ongoing process of surfacing insights that feed into planning and prioritization. These insights
improve the quality of builds, reduce the need for reactive firefighting, and help teams deploy
at speed without losing control.

5

When performance drops or something breaks in your Salesforce
org, you need to know what happened before you can fix it.
But without the right insight you’re left scrambling — digging
through logs, chasing symptoms, and relying on users to tell you
what’s gone wrong. Observability changes that. It helps you move
from reactive to proactive, from guesswork to understanding.

This shift is central to DevOps. Observability creates the feedback loops that DevOps depends
on — helping teams detect issues early, fix them faster, and continuously improve how they
deliver changes.

Consider the last time something went wrong in production. How quickly were you able
to answer the following questions, if at all?

•	 What exactly has gone wrong — and where?

•	 Who’s been affected?

•	 How do I fix it?

•	 Why has it happened?

•	 How do we prevent it happening again?

If those answers aren’t immediately available, it’s a sign your observability practices need
strengthening. With the right tools and telemetry in place, these questions stop being
emergencies — and become part of how you work every day.

Why DevOps needs observability

6

Salesforce’s observability gap —
and why it matters

“We’ve been talking about observability a lot at Salesforce
recently. What it means to me is getting access to data and
insights — whatever it is that is most relevant to you —
and being able to act on that data and those insights.”

		 Karen Fidelak,
		 Senior Director Product Management, Salesforce

For a long time, observability has been
a standard practice on other development
platforms, yet it hasn’t been widely
implemented for Salesforce. Until now, most
Salesforce teams have focused on solving
the challenge of building a successful
deployment process. But as DevOps adoption
matures, observability is the natural next step
and it’s one that many teams are still missing.

According to the 2025 State of Salesforce
DevOps Report, 49% of Salesforce teams say
that observability isn’t even on their radar.
Of the teams without observability tools,

74% say they only find out about issues when
users report them. It’s a reactive cycle that
keeps teams on the back foot.

Now, as Salesforce itself is championing
observability and continues to align more
closely with development best practices on
other platforms, observability is something
Salesforce teams can’t afford to miss out on.

https://gearset.com/devops-report/2025/
https://gearset.com/devops-report/2025/

7

Compared with the wider world of software development, most Salesforce teams are behind
the curve when it comes to observability. That’s not just down to priorities — the platform itself
poses unique challenges that can make it harder to implement the kind of visibility that DevOps
teams rely on.

Unique challenges for Salesforce observability

Being a Platform as a Service (PaaS), Salesforce comes with
certain trade-offs that affect how easily teams can observe
and troubleshoot issues. The number and configuration
of development and QA environments are often limited,
and these environments rarely mirror production closely.
That makes it harder to reproduce bugs or test under realistic
conditions. Log creation and storage is also restricted, making
it difficult to gather the right information at the right time.

Salesforce’s multi-tenant cloud architecture adds another
layer of complexity in the form of governor limits (built-in limits
on resource usage per transaction) and restricted logging
capabilities. These limitations make it harder to identify,
prevent, and remediate issues.

Salesforce’s first-party tooling doesn’t yet cover all the
observability needs that come with building increasingly
complex applications on the platform. While some monitoring
and logging features are available, they aren’t always designed
to support enterprise-scale development or give teams the
depth of insight they need across the DevOps lifecycle.

It can be harder to justify investment in observability than
other DevOps solutions. Its benefits — like faster incident
resolution, improved stability, and better developer feedback
— often sit in the background, while delivering new features
tends to take center stage. And with fewer well-established
observability practices within the Salesforce ecosystem,
teams don’t always have a clear path to follow.

Multi-tenant
architecture

Lack of native tools

Difficulty getting
buy-in

Platform as a Service

8

Salesforce is a mission-critical platform for businesses, so uptime and reliability are crucial.
As a result, organizations often rely on long UAT cycles to thoroughly test before releasing —
but this can clash with Agile methodologies and slow down the pace of development.

As Salesforce applications scale, their complexity, scope, and volume of data all increase,
making it even harder to see if the application can handle it all. Without strong observability
practices in place, teams risk flying blind just when they need visibility the most.

Observability can stop serious disruption in production. In 2024, bugs caused a Salesforce
outage at 21% of businesses. Teams with observability tools are 50% more likely to catch critical
bugs like these within a day and 48% more likely to fix them just as quickly.

That kind of responsiveness is core to modern DevOps — especially the principle of “shifting
left”, which focuses on identifying potential issues earlier in the development lifecycle, long
before they reach production.

What you’re missing without Salesforce observability

When salesforce observability is done right, teams can:

1.	 Reduce critical and costly system downtime

2.	 Adopt DevOps best practices and increase team capacity

3.	 Scale alongside business needs

“Observability is a cornerstone of any successful Salesforce
DevOps strategy. It’s not just about knowing what’s happening
in your systems but understanding why it’s happening —
so you can fix issues faster, prevent them proactively,
and continuously improve how you deliver value.”

Rob Cowell,
DevOps Advocate, Gearset

https://gearset.com/devops-report/2024/

9

In this section, we’ll walk through three of the most common
observability gaps in Salesforce orgs. These aren’t theoretical
issues; they’re the real-world pain points that block debugging,
hide regressions, and slow down delivery.

For each one, we’ll explore how to uncover the signals that matter, build smarter monitoring
practices, and give your team the context they need to move faster with more confidence.

Here’s what we’ll focus on:

•	 Unhandled exceptions

•	 Governor limits

•	 Storage sprawl

Arrange a tailored demo
with our DevOps experts

Kick off your observability process with a 15-minute call
to talk through where your current gaps are, what your org
needs, and how to build observability into your workflow.

How to close Salesforce’s biggest
observability gaps

BOOK A DEMO

https://gearset.com/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=observability-25&utm_content=observability-whitepaper-cta
https://gearset.com/

10

Unhandled exceptions can seriously disrupt business continuity and app stability. When
Salesforce hits unexpected errors without proper handling, it aborts the entire transaction and
every data change is rolled back. Diagnosing these errors is challenging because the platform
doesn’t provide much context.

In Apex, unhandled exceptions are those that
aren’t caught using a try-catch block. These
blocks allow developers to catch runtime
errors and handle them in a controlled way
by showing a user-friendly message, triggering
a recovery path, or at the very least, preventing
the entire transaction from crashing. Without
a try-catch, the platform has no choice but
to fail hard and leave users in the dark.

But just catching an exception isn’t enough.
If the catch block simply logs the error
or does nothing — a pattern known as
swallowing exceptions — the system can
be left in an inconsistent state without anyone
noticing. Data might be committed after
something went wrong, making problems
harder to spot later.

When unhandled exceptions happen in Apex,
you typically get a stack trace — a few lines
of code that executed before the error — but
no detail about the state of variables or the
transaction that led up to it. If you’re lucky,
the user who experienced the issue might
be able to describe what they were doing.
But for asynchronous Apex like Batch or
Scheduled jobs, there’s often no way to know
what triggered the failure or what data
was involved.

In Flows, unhandled exceptions occur when
there’s no fault path configured, so the Flow
stops and the user sees a generic error.
This can seem unhelpful, but it can make
unexpected issues easier to catch and fix.
If fault paths just log problems without

Exceptions are errors that disrupt code execution

Exceptions that the code doesn’t or can’t catch

Exceptions

Unhandled exceptions

Unhandled exceptions
Blind spots

•	 Debugging is slow, manual, and often
missing context.

•	 Unhandled errors cause silent
transaction failures.

With observability

•	 Metadata change tracking speeds up root
cause analysis.

•	 Proactive logging and real-time error visibility
helps catch issues early.

11

properly handling them, incomplete or invalid
data might still be committed.

By default, Salesforce emails exception
details to the last user who modified the
affected component. Apex emails typically
lack useful detail, while Flow emails
provide technical information that’s
difficult to interpret.

Sending exception emails to the last
modifying user isn’t reliable, as that user
might be inactive or a generic account with
an unmonitored inbox. While Salesforce lets
you choose who receives these emails, the
inbox often fills with technical details that
users struggle to interpret or act on quickly.

To debug unhandled exceptions effectively,
teams need immediate, detailed visibility into
what happened at runtime. But Salesforce’s
default logging makes that hard. Debug logs
require a trace flag on a specific user, class,
or process. These manually activated flags —
diagnostic switches that trigger log capture —
last up to 7 days by default (or 24 hours in the

Developer Console), or until log storage runs
out, whichever comes first. You can configure
which types of events are captured, but only
from a predefined set.

That might be fine when you can reproduce
an issue in a sandbox. But exceptions are
rarely predictable — and the storage limits
make it unlikely that useful logs will exist
when the issue first occurs. Compounding the
problem, Salesforce debug logs only capture
data if a trace flag is already active. By the
time you know something went wrong, it’s
often too late to capture the detail you need.

Even when debug logs are available,
analyzing them through Salesforce’s
default tools is difficult. Logs are lengthy,
unstructured text streams, lacking consistent
field names or formatting. In the Developer
Console, lines are often truncated, there’s
no clear visual indication of transitions
between classes or declarative logic, and
overly granular trace flags add repetitive
noise — making real issues difficult to identify
or analyze.

To debug unhandled exceptions effectively, you need proactive
strategies that go beyond Salesforce’s native error handling.

12

Being able to correlate unexpected behavior
with recent changes — by tracking metadata
differences and deployment activity across
environments — makes it easier to identify
likely causes.

When an exception occurs, the first question
to ask is whether the action that triggered
it was expected — a known use case —
or something entirely new. If it’s an existing
business process there’s a chance that this
was previously supported and some sort of
regression has occurred. In that case, recent
change and deployment logs can reveal
where the change was introduced, and rolling
back may be good enough to restore service
— assuming your DevOps process can
support this.

If the action itself is new — even if it looks
similar to older behavior — the problem may
lie in legacy logic that no longer fits today’s
needs. For example, a validation rule that
once limited an Opportunity to three Line
Items might have made sense in the past,
but changing business requirements could
now mean users need to add five. No code
change triggered the error — the system
simply didn’t keep up with real-world use.
In these cases, observability tools can
surface the conditions that caused the failure,
helping teams move quickly from detection
to diagnosis to a targeted fix.

Track metadata changes across environments

Proactive exception handling

Dealing with unhandled exceptions proactively means building
a feedback loop that enables early detection, faster debugging,
and minimal disruption.

13 13

Metadata change monitoring

Stay ahead of failures with real-time change awareness

Gearset’s metadata change monitoring brings visibility into day-to-day workflows. It tracks
changes across your Salesforce environments, highlighting what’s been added, modified,
or removed — even outside of the formal deployment process.

Change monitoring gives your team the context they need to connect unexpected behavior
to recent configuration or code changes, accelerating root cause analysis and reducing time
spent hunting through logs or chasing assumptions.

Try it free for 30 days

Kick off your observability adoption with a free trial of Gearset’s change monitoring solution.

START FREE TRIAL

https://gearset.com/solutions/automate/change-monitoring/
https://app.gearset.com/create-account?utm_source=whitepaper&utm_medium=pdf&utm_campaign=observability-25&utm_content=observability-whitepaper-trial

14

When an error occurs in Apex or a Flow,
you’re often starting with just the line of code
where the error occurred and the exception
message as your context. For something like a
null pointer exception, where several variables
could be involved, narrowing down the root
cause becomes guesswork without visibility
into the transaction’s state at runtime.

Salesforce does have some native tools that
can help. You can execute the Flow step-by-
step in “rollback mode” to test or debug your
Flows manually. This means changes
made to the database in the debug run will
be reverted so that you don’t accidentally
change any real data.

On the Apex side, tools like the Apex Debug
Log Replayer and the free Apex Log Analyzer
plugin for Visual Studio Code can offer
a clearer view of execution flow and
transaction bottlenecks.

Surface and trace Flow and Apex errors

Easy error monitoring

Proactively catch Flow and Apex errors and prevent them
impacting users

Gearset’s observability solution captures Flow and Apex errors in real time and surfaces them
in an intuitive dashboard.

Get full visibility into your errors, so you can spot trends and diagnose root causes more easily.
Configure custom alerts to catch unexpected spikes in errors and prevent issues from escalating.
And use the data to guide strategic decisions and make the biggest impact on org health.

Try it free for 30 days

Kick off your observability adoption with a free trial of Gearset’s observability solution.

14

START FREE TRIAL

https://developer.salesforce.com/docs/platform/code-builder/guide/replay-debugger.html
https://developer.salesforce.com/docs/platform/code-builder/guide/replay-debugger.html
https://marketplace.visualstudio.com/items?itemName=financialforce.lana
https://gearset.com/solutions/observability/error-monitoring/
https://app.gearset.com/create-account?utm_source=whitepaper&utm_medium=pdf&utm_campaign=observability-25&utm_content=observability-whitepaper-trial

15

Salesforce’s Event Monitoring, now available
in a free tier as of the Winter ’25 release,
is a step toward making the right runtime
signals more visible. It reflects a growing
recognition that exception emails alone aren’t
scalable or sufficient for understanding and
resolving failures.

While Event Monitoring can uncover issues
that didn’t generate an exception email,
it remains a reactive tool. Its event logs are
pulled manually and only generated during
off-peak hours the following day, unless
you’re using a paid edition that supports
Real-Time Event Monitoring. This limits their
usefulness for time-sensitive debugging
of Apex and Flow failures. For faster
resolution, it’s still essential to have processes
in place for triaging and responding
to exception emails as they arrive.

To improve how quickly exceptions are
diagnosed, teams can layer broader event
monitoring across activities like deployments,
metadata changes, and Flow faults. Capturing
these critical signals closer to real time —
through custom Platform Events — provides
the missing context around why failures
occur. Structured event data, consistently
capturing who initiated an action, what
changed, and what the outcome was, can
help teams link exceptions back to recent
system activity and reduce recovery time.

But while broader event monitoring provides
visibility into the overall flow of system
activity, it doesn’t replace the need for
detailed, transaction-level insight. That’s
where logging comes in.

Observability doesn’t begin at runtime. It starts in the plan and build phases of the DevOps
lifecycle, where you decide what to log, where to log it, and how it will be used.

Use event monitoring for runtime visibility

Embed structured proactive logging

https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/using_resources_event_log_files.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/using_resources_event_log_files.htm
https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/using_resources_event_log_files.htm
https://help.salesforce.com/s/articleView?id=xcloud.real_time_event_monitoring_overview.htm&type=5
https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_events_intro.htm

16

When you’re starting from scratch, it’s much easier to build observability into your DevOps
lifecycle. You can plan what to log as you design your code or declarative functionality,
identifying key decision points and outcomes as part of the build.

With existing applications, retrofitting structured logging requires identifying valuable logging
points across a mature codebase and layering that functionality in. A more realistic approach
is to embed structured logging into new work as it moves through the pipeline, while gradually
addressing the technical debt in older areas over time.

A custom logging framework helps standardize this approach and close the visibility gap.
By capturing runtime context like user input, decision paths, and API responses, structured logs
allow you to reconstruct what led up to the failure — even when the exception itself doesn’t
contain much detail. This can be especially valuable for automated processes, such as Batch
Apex or Scheduled Jobs, where no one is around to describe what went wrong.

Structured logs also support downstream alerting, analysis, and reporting. Tools like Nebula
Logger and Pharos enhance this by capturing events asynchronously using platform events
or storing logs in custom objects, making them queryable, persistent beyond standard log
storage limits, and enabling rich alerting and reporting via native dashboards or external
systems. Developer tools like the Apex Log Analyzer from Certinia — VS Code Marketplace
extension — also give you more visibility into the debug logs and a cleaner view of the progress
of the transaction. Although, as the Apex Log Analyzer works with log files downloaded locally,
it isn’t an easy option for shared access or team review — but you can still share the files
manually if needed.

The system you build or install
to standardize logging. It defines what
to log, how to format it, and where
to store it — often using custom objects
or platform events. It enables consistent,
scalable observability across your org.

The output of a logging framework —
a machine-readable log entry (e.g.
JSON) with consistent fields like
timestamp, userId, and action. Easy
to query, analyze, and integrate into
alerts or dashboards.

Custom logging framework Structured log

https://github.com/jongpie/NebulaLogger
https://github.com/jongpie/NebulaLogger
https://pharos.ai/
https://marketplace.visualstudio.com/items?itemName=financialforce.lana

17

Feature Debug logs Event Monitoring

Primary use case Application-level debugging
(Apex, Flows, validation rules,
triggers).

Platform-level auditing and
visibility (logins, API calls,
report exports, etc.).

How it’s activated Requires setting a trace flag
on a user, class, or process.

Always on (no manual activation
required for standard events).

Log generation Generated in real-time during
user interactions or code
execution, provided there’s
an active trace set up and within
Salesforce governor limits.

Generated once daily, during
off-peak hours.

Retention Stored temporarily — expires
automatically after 7 days (or
24 hours if created in Developer
Console). When storage is full, logs
stop generating until you manually
delete existing ones.

Stored for 30 days by default
(longer with paid add-ons).

Level of detail Configurable and can be very
detailed — includes stack
traces, variable states, and
execution flows.

High-level — metadata about
events, but not full runtime context.

Configurability Customizable log levels
(e.g. DEBUG, INFO) for
specific components.

Captures a fixed set of event
types; not configurable per event.

Data format Verbose text output (viewed
in developer console
or logs viewer).

Structured CSV files intended for
external analysis.

Best for Developers troubleshooting
application logic.

Admins/security teams analyzing
org usage and user behavior.

Limitations Requires manual setup, prone
to log loss if storage is exceeded.

Not real-time, no access
to fine-grained execution state.

Debug logs and Event Monitoring —
what’s the difference?

18

Governor limits

Salesforce enforces strict limits on CPU time, queries, and transactions. Without proactive
monitoring, these limits can quietly become performance bottlenecks.

Governor limits exist to ensure fair resource usage in the multi-tenant architecture of the platform.
The challenge is that governor limit exceptions can’t be caught in Apex. When a transaction
exceeds a limit, Salesforce terminates it immediately, and no further code is executed —
including any try-catch blocks or logging routines.

Some of the most common thresholds include:

Blind spots

•	 Governor limit breaches cause sudden,
hard failures without warning.

•	 Failures are isolated events, difficult
to connect to systemic issues.

With observability

•	 Usage patterns are monitored to predict
and prevent threshold breaches.

•	 Consumption trends are visible across
transactions, helping teams plan
scalable architecture.

•	 CPU time: 10,000 milliseconds per
synchronous transaction (60,000
ms for asynchronous).

•	 SOQL queries: 100 per synchronous
transaction (200 async).

•	 DML operations: 150 statements
per transaction.

•	 Records returned by SOQL:
Up to 50,000 total.

•	 Records processed by DML: 10,000 rows.

•	 Heap size: 6 MB synchronous,
12 MB asynchronous.

•	 Callouts: 100 per transaction.

•	 Queueable chain depth: Maximum
of 50 jobs in a single chain.

Even the most sophisticated logging frameworks won’t catch or log governor limit exceptions.
That’s why fallback mechanisms — like email alerts or the new free tier of Platform Event
Monitoring — will always have a role in observability. There’s always a risk of hitting those
invisible ceilings.

You can think of governor limits like a fuel warning light: it’s a good idea to trigger an alert when
a transaction uses about 90% of any given limit. That way, you get an early heads-up and
a chance to act before the hard ceiling is hit. Otherwise a transaction burning through 99%
of its limits can look exactly the same as one that’s barely using any.

https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_events_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.platform_events.meta/platform_events/platform_events_intro.htm

19

Designing for governor
limit resilience

Governor limit resilience means understanding how your org
consumes resources and building in ways to anticipate, detect,
and adapt to platform limits before they cause failures.

Design for data usage awareness

Avoiding governor limit breaches requires more than monitoring — it needs predictive awareness.
This starts with understanding org-level consumption patterns: API calls, DML operations,
storage, platform event deliveries.

​​Governor limits are designed so that standard transactions should stay within the thresholds.
If your application consistently bumps into them, it’s a sign the architecture is straining against
the platform — often because it’s processing more data than it was designed for. The earlier you
can spot these stress points, the more options you have for resolving them safely.

While most governor limit breaches result in uncatchable hard failures, certain asynchronous
contexts do offer limited recovery mechanisms. For example, in a Batch Apex job that
implements the RaisesPlatformEvents interface, any unhandled exceptions will emit
a BatchApexErrorEvent. These events can be subscribed to and used to trigger a remediation
workflow — whether that’s notifying a team, logging additional detail, or even retrying a process.

Similarly, Queueable Apex now supports the Finalizer interface, which allows you to define
TransactionFinalizer methods. These run in a separate transaction — even if the main queueable
fails — and can access the context of the failed job. While these options don’t prevent governor
limit exceptions, they can soften the impact by providing a structured response when something
goes wrong.

20

While governor limit breaches can’t be caught or logged once they occur, structured logging
plays a vital role in identifying risks before they escalate. Logging resource usage at key points in
a transaction — such as CPU time consumed, heap size, SOQL query counts, and DML operation
totals — gives you visibility into how close a process is getting to platform limits. This early
insight makes it possible to detect when a business process is starting to strain under growing
data volumes or architectural complexity.

For example, logging CPU usage checkpoints during a large batch job can highlight when
synchronous processing should be re-architected as asynchronous. Tracking SOQL query counts
inside loops can reveal inefficient patterns before they hit hard limits. Monitoring heap size trends
can expose memory-heavy operations that risk heap overflow.

By embedding lightweight, structured logging into high-risk areas of the codebase, you can spot
scaling challenges long before they appear as production failures — giving you time to rework
logic, split processing, or optimize queries proactively.

Test at realistic data volumes

Testing at scale is an important part of a resilient delivery pipeline. Large data volumes are rarely
tested thoroughly in typical environments, largely because it’s complex and time-consuming
to do so. But without realistic volume testing, teams risk discovering too late that a synchronous
process needs to be re-architected as asynchronous — often after a governor limit breach has
already impacted production.

Full-copy sandboxes are ideal for validating performance and behavior at scale. However,
they’re often repurposed for UAT, which can make them unsuitable for long-running volume
tests. UAT environments tend to be active, shared, and filled with competing test activity — not
the best setting for stress testing. A better strategy could be to seed a partial-copy sandbox with
representative data volumes for day-to-day testing, preserving your full-copy environment for
dedicated volume and regression validation.

Monitor resource usage

21

Sandbox seeding

Seed sandboxes for realistic testing.

Seed test environments with production-like data sets — without the overhead or risk of cloning
full environments every time.

•	 Seed sandboxes with related records across multiple objects using pre-defined filters and
relationship mapping.

•	 Mask sensitive data during deployment to protect personally identifiable or confidential
information while still enabling realistic testing.

•	 Create reusable deployment templates, so you can quickly re-seed environments as needed
or ensure consistency across multiple sandboxes.

Bridge the gap between test automation and real-world usage patterns, and uncover issues like
governor limit risks before they reach production.

Try it free for 30 days

Kick off your observability adoption with a free trial of Gearset’s Sandbox seeding solution.

START FREE TRIAL

https://gearset.com/solutions/manage-data/sandbox-seeding/
https://app.gearset.com/create-account?utm_source=whitepaper&utm_medium=pdf&utm_campaign=observability-25&utm_content=observability-whitepaper-trial

22

Storage sprawl

Observability isn’t just about catching runtime failures — it also plays a vital role in managing
long-term risks like data bloat. While Salesforce enforces strict governor limits at runtime
to protect system performance, storage usage tends to fly under the radar. But if left unchecked,
storage usage can quietly grow out of control, leading to escalating costs, slower performance,
and an increased risk of hitting org limits.

Storage growth might not cause a governor limit breach directly, but it’s often the precursor.
A process that once ran smoothly can start to strain — a query that used to return a few hundred
records might now return tens of thousands. A synchronous job that was safe last year could
suddenly run into heap size or CPU timeouts. The heap is the memory storage allocated to store
objects and variables during code execution, while CPU time is the total processing time allowed
for a transaction. As your data grows, so does the chance of hitting those limits.

Blind spots

•	 Storage growth is hidden until performance
or costs are impacted.

•	 No easy way to detect fast-growing objects
or integration issue.

With observability

•	 Data growth trends are tracked early, triggering
proactive retention and scaling strategies.

•	 Object-level data insights help prioritize
archiving, cleanups, and architectural changes.

23

Making storage sprawl visible

Governor limits don’t cap how much data you
can store — but they do control how much
work your code can do. As your data grows,
so does the effort required to retrieve,
process, and respond to it. That raises the
likelihood of hitting critical thresholds.

These limits are designed to protect platform
stability, but they assume a certain scale of
usage. If your data volume grows faster than

your architecture adapts, your org can
slowly become more fragile.

Tracking how your data grows over time
gives you a better chance of spotting when
a process needs to move from synchronous
to asynchronous — or when an architectural
change is needed. Even a manual process for
capturing and trending object-level storage
usage is better than having no visibility at all.

It isn't easy to monitor object-level storage in Salesforce, but
getting visibility into your data growth is essential for keeping
your org stable and scalable

Unfortunately, Salesforce doesn’t offer a native
API to retrieve object-level storage usage.
Top-level storage totals are available via
Apex and the REST API, but the object-level
breakdown (as shown in the Setup → Storage
Usage page) isn’t accessible programmatically,
other than using screen scraping. It’s clunky,
but for now, it’s one of the only ways to get that
level of insight.

Salesforce does expose current limit states
through a REST API endpoint. By polling this
regularly, you can build dashboards and
trigger alerts that flag anomalies or thresholds
that are about to be hit. Over time, this visibility

helps establish baselines for expected
integration behavior — so when a connected
system or inbound integration suddenly
pushes more data than usual, teams can
investigate before limits are breached.

Knowing how much data exists in your org,
how fast it’s growing, and how close you
are to predefined architectural thresholds
gives product and engineering teams time
to respond. Whether you’re catching a query
that’s creeping up toward the 50k-row limit
or identifying a batch process that’s brushing
against heap size, early visibility is the key
to long-term stability.

Turn data growth into a signal

Uncover object-level storage gaps

24

Data dashboard

See storage trends in real-time.

Gearset’s Data dashboard — included with all Backup licences — brings long-term visibility into
how your Salesforce data is evolving. Unlike the static snapshot in the Salesforce Setup UI, the
dashboard gives you a historical view of storage trends across your org.

•	 Identify fast-growing objects

•	 Catch unexpected data spikes early

•	 Forecast when you might hit storage or volume-related thresholds

With this insight, teams can make smarter decisions about data retention — what to archive,
what to delete, and what to keep. Proactive storage management reduces long-term
performance overhead and helps maintain a healthier, more scalable Salesforce environment.

Try it free for 30 days

Kick off your observability adoption with a free trial of Gearset’s backup solution.

START FREE TRIAL

https://gearset.com/blog/how-to-track-data-usage-in-salesforce/
https://app.gearset.com/create-account?utm_source=whitepaper&utm_medium=pdf&utm_campaign=observability-25&utm_content=observability-whitepaper-trial

25

Observability is a fundamental principle of DevOps done right
and the result of deliberate design decisions made throughout the
development lifecycle, capturing meaningful signals about system
behavior in ways that are actionable, contextual, and scalable.

Implementing observability

Core principles for a Salesforce observability framework

Start designing for visibility early in your DevOps lifecycle.
Integrate observability during the plan and build stages, embedding
structured logging, error handling, and runtime context tracking into
your code and configuration.

Capture meaningful,
structured context

Treat exceptions
as signals

Track behavior
over time

Start designing
for visibility

A log line is only useful if it tells you why something happened.
Capturing inputs, outputs, and execution context turns logs into
actionable diagnostics. Move beyond plain debug logs by adopting
structured logging frameworks that make it easy to search, analyze,
and trigger alerts from the data your org generates.

Errors aren’t just problems to patch, they’re signals about how your
system behaves under pressure. Surface failures clearly, categorize
them by business process, and connect them back to what the user
or system was trying to do at the time.

Observability isn’t just about failures — it’s about trends. Logging
CPU time, heap usage, or SOQL rows over time builds a profile of
what “normal” looks like, so you can catch slow degradations early.

26

Plan for scale
and failure

You can’t catch governor limit breaches — but you can see them
coming. Logging usage, understanding limits, and using async
recovery options like finalizers or Batch error events gives you
more control when things go wrong.

Connect issues
to change

When something breaks, look at what changed. Observability
tools should help you connect errors to recent deployments
or config updates, so you’re not left guessing which commit
introduced a problem.

27

How do you know where your blind spots are? Here’s a quick observability
health check to find out:

Observability gaps: a checklist

Change awareness

Are you monitoring metadata changes
across environments?

Can you correlate recent deployments
or config changes with new issues?

Exception handling

Do you have a workflow for catching and
triaging unhandled exceptions?

Are caught exceptions logged and
categorized by business process?

Do Flow errors surface in tools your
developers use — not just email inboxes?

Logging coverage & structure

Are all critical events logged —
not just errors?

Do your logs capture input, output,
execution context, and system state?

Is your logging structured and queryable
for easy analysis?

Do developers consider what needs
logging or monitoring as part of planning
and design?

Governor limit awareness

Can you see where your application
is approaching platform limits like CPU
time, heap size, or DML rows?

Are you testing performance at realistic
data volumes, not just happy-path
test cases?

Storage visibility

Do you know which objects are growing
fastest in your org?

Can you forecast future data trends and
their potential impact on performance?

Do you have a process for archiving
or cleaning up data before it becomes
a problem?

Even the best maintained Salesforce orgs can have hidden blind
spots. Without the right observability measures in place, issues
can go unnoticed until they start causing real problems.

28

Observability transforms Salesforce teams from reactive problem-
solvers to proactive, high-performing teams. When your platform
is emitting meaningful, structured data about what it’s doing and
how it’s behaving, you get a feedback loop that actually helps you
build better software.

Next steps: integrating observability

​​You can’t fix what you can’t see — and
without proper observability, you’re left
reacting to issues long after they’ve impacted
users. Whether it’s governor limit breaches,
silent performance degradation, or bugs that
only show up in edge cases, the cost of flying
blind is real: downtime, frustrated users, and
firefighting that slows everything down.

That lack of visibility breaks the feedback
loop that good DevOps depends on.
Without clear signals from production,
it’s harder to learn from issues, harder
to ship with confidence, and harder to know
whether changes are improving things
or making them worse. The techniques
in this whitepaper are designed to close

that loop by layering multiple practices that
work together to make your system more
observable, debuggable, and resilient.

The good news? Visibility gaps don’t have to
be your default. Salesforce can be observable
— and it starts by embedding logging, error
handling, and execution context into how you
build. The payoff is a faster, more confident
DevOps process with fewer surprises and
much better data to make decisions.

At Gearset, we work with hundreds of teams
who are building observability into their
pipelines every day — and we’d love to help
you do the same.

Arrange a tailored demo with our DevOps experts
Kick off your observability process with a 15-minute call to talk through where your
current gaps are, what your org needs, and how to build observability into your workflow.

BOOK A DEMO

https://gearset.com/?utm_source=whitepaper&utm_medium=pdf&utm_campaign=observability-25&utm_content=observability-whitepaper-cta
https://gearset.com/

29

Gearset is the complete Salesforce DevOps platform, enabling
teams to implement best practices throughout the entire
DevOps lifecycle.

With powerful solutions for metadata and CPQ deployments,
CI/CD, testing, code scanning, sandbox seeding, backups,
archiving and observability, Gearset offers teams unparalleled
visibility and control over their Salesforce process.

More than 3,000 enterprises, including McKesson and IBM,
use Gearset to accelerate development, improve release
quality, enhance security, and make Salesforce deliver.

About
Gearset

	Who should read this whitepaper?
	What is observability?
	Why DevOps needs observability
	Salesforce’s observability gap — and why it matters
	How to close Salesforce’s biggest observability gaps
	Unhandled exceptions
	Proactive exception handling
	Metadata change monitoring
	Easy error monitoring

	Governor limits
	Designing for governor
limit resilience
	Sandbox seeding

	Storage sprawl
	Making storage sprawl visible
	Data dashboard

	Implementing observability
	Core principles for a Salesforce observability framework
	Observability gaps: a checklist

	Next steps: integrating observability
	About Gearset

	Check Box 1: Off
	Check Box 16: Off
	Check Box 29: Off
	Check Box 25: Off
	Check Box 27: Off
	Check Box 15: Off
	Check Box 18: Off
	Check Box 19: Off
	Check Box 20: Off
	Check Box 21: Off
	Check Box 22: Off
	Check Box 23: Off
	Check Box 30: Off
	Check Box 31: Off

